Yıl: 2021 Cilt: 45 Sayı: 3 Sayfa Aralığı: 547 - 555 Metin Dili: İngilizce DOI: 10.3906/vet-2006-43 İndeks Tarihi: 04-07-2022

An assessment of ensiling potential in maize x legume (soybean and cowpea) binary mixtures for yield and feeding quality

Öz:
In this study, maize and legume intercropping were evaluated in terms of silage yield and quality. Maize (Zea mays L. “M”) was intercropped with soybean (Glycine max L. “S”) and cowpea (Vigna unguiculata L. “C”) as binary mixtues (maize + legume), and the seed rates were as follows: 100 + 0%, 75 + 25%, 50 + 50% and 25 + 75%. The harvested plants were chopped with the particle size of < 2, ensiled in 2 kg plastic jars and left fermentation at 25 ± 2 °C for 45 days. In this study, silage yield, dry matter ratio, pH value, crude protein ratio, acid detergent fiber, neutral detergent fiber, digestibility of dry matter, dry matter intake, total digestibil nutrient relative feed values, lactic acid, acetic acid, butyric acid, malic acid, citric acid, succinic acid, oxalic acid, potassium, phosphorus, calcium, and magnesium contents were determined. All the M + S mixtures showed high performance in terms of Flieg score and lactic acid content. The highest relative feed quality value was determined in the sole cowpea (156.4) and 25M + 75S% (148.5) mixture. As a result, intercropping maize with legumes resulted in superior silage quality without a reduction in yield.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Harmansah F. Forage quality, problems and suggestions in the Turkey. Journal Turkey Seed Growers Association 2018; 25: 9-13.
  • 2. Allen MS, Coors JG, Roth GW. Corn silage. In: Buxton DR, Muck RE, Harrison JH (editors). Silage Science and Technology. Madison: American Society of Agronomy, Crop Science Society of America, Soil Science, Society of America; 2003. pp. 547-608.
  • 3. Sah RP, Ahmed S, Malaviya DR, Saxena P. Identification of consistence performing dual purpose maize (Zea mays L.) genotypes under semi-arid condition. Range Management & Agroforestry 2016; 37: 162-166.
  • 4. Turgut I. Cultivation of corn silage. In: E. Açıkgöz, I. Turgut and I. Filya (editors). Growing Silage Crops. İstanbul, Turkey: Hasad Pressing; 2002. pp. 11-33.
  • 5. Sade B, Soylu S. Corn farming in the World and Turkey. National Cereal Symposium; Konya, Turkey; 2008. pp. 101- 108.
  • 6. McDonald P, Edwards RA, Greenhald JFD. Animal Nutrition. 4th Edition Longman Group, UK Ltd. 1987. pp. 1-7.
  • 7. Church DC. Livestock Feeds and Feeding. 3rd Edition. Prentice-Hall. Incl. New Jersey, USA 1991. pp. 80-94.
  • 8. Topps JH, Oliver J. Animal foods of Central Africa. Zimbabwe Agricultural Journal Technical Handbook 1993; 2: 135.
  • 9. Titterton M. The feasibility of using forage sorghum in drought years for silage in Zimbabwe. In: Kirk R (Ed). Proceedings of the Annual General Meeting on Forage production for dairying in Zimbabwe, Grasslands Society of Zimbabwe. August, 1997.
  • 10. Kowalczyk E, Patyra E, Kwiatek K. Organic acids and their importance in animal husbandry. Medycyna Weterynaryjna 2013; 69 (5): 269-273.
  • 11. Kilic A. Silo feed (Instruction, Education and Application Proposals). Bilgehan Press, Izmir, 1986.
  • 12. Uden P. Plant organic acids in fresh and ensiled forage plants. Grass Forage Science 2018; 73: 583-587. doi:10.1111/gfs.12361.
  • 13. Başaran U, Gülümser E, Mut H, Çopur Doğrusöz M. Determination of silage yield and quality of grasspea + cereal intercrops. Turkish Journal of Agriculture - Food Science and Technology 2018; 6 (9): 1237-1242. doi: 10.24925/turjaf. v6i9.1237-1242.2022
  • 14. Van Soest PJ. The use of detergents in the analysis of fibre feeds. II. A rapid method for the determination of fibre and lignin. Journal of the Association of Official Analytical Chemists 1963; 46: 829-835.
  • 15. Van Soest PJ, Wine RH. Use of detergents in the analysis of fibrous feeds. IV. Determination of plant cell-wall constituents. Journal - Association of Official Analytical Chemists 1967; 50: 50-55.
  • 16. Rohweder DA, Barnes R, Jorgensen, N. Proposed Hay Grading Standard Based on Laboratory Analyses for Evaluating Quality. Journal of Animal Science 1978; 47: 747-759.
  • 17. Can M, Kaymak G, Gülümser E, Acar Z, Ayan İ. Determination of silage quality of Bituminaria bituminosa with oat mixtures. Anadolu Journal of Agricultural Sciences 2019; 34: 371-376. doi: 10.7161/omuanajas.548215.
  • 18. Panyasak A, Tumwasorn S. Effect of Moisture Content and Storage Time on Sweet. Walailak Journal of Science and Technology 2013; 12 (3): 237-243.
  • 19. Filya, I. Silage technology. Hakan Ofset Press, İzmir, 2001. 20. Ergün A, Çolpan İ, Yıldız G, Küçükersan S, Tuncer ŞD et al. Feeds, Feed Hygiene and Technology. Ankara University, Faculty of Veterinary Medicine, Textbook, Ankara, 2007.
  • 21. Alaca B, Özaslan Parlak A. The Effect of Maize and SorghumSudangrass Crosses Intercropped with Soybean, Cowpea, Guar On, Silage Yield and Quality. COMU J. Agriculture Faculty 2017; 5 (1): 99-104.
  • 22. Leonel FP, Pereira JC, Costa MG, Marco Júnior P, Lara LA et al. Consórcio capim-braquiária e soja, produtividade das culturas e características qualitativas das silagens. Revista Brasileira de Zootecnia 2008; 37 (11): 2031-2040. doi: 10.1590/S1516- 35982008001100020
  • 23. Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 1991; 74: 3583-3597.
  • 24. Van Soest PJ. Nutritional Ecology of the Ruminant. Newyork, USA, Cornell University Press; 1994.
  • 25. Lima-Orozco R, Castro-Alegría A, Fievez V. Ensiled sorghum and soybean as ruminant feed in the tropics, with emphasis on Cuba. Grass and Forage Science 2013; 68 (1): 20-32. doi: 10.1111/j.1365-2494.2012.00890.x
  • 26. Kaplan M, Kökten K, Akçura M. Determination of Silage Characteristics and Nutritional Values of Some Triticale Genotypes. Turkish Journal of Agricultural and Natural Sciences 2014; 1(2): 102-107.
  • 27. Kilic A. Determined of quality in roughage. Hasad Publication, Istanbul, 2006.
  • 28. König W, König E, Elo K, Vanhatalo A, Jaakkola S. Effects of sodium nitrite treatment on the fermentation quality of red clover - grass silage harvested at two dry matter concentrations and inoculated with clostridia. Agriculture and Food Science 2019; 28: 155-164. doi: 10.23986/afsci.85114
  • 29. Alçiçek A, Özkan K. Determination of Silage Quality for Silo Feed. First Turkish Sillage Conference, Bursa, Turkey, 1997. pp. 241-246.
  • 30. Woolford MK. The Silage Ferment. Grassland Research Institute, Hurley, England, 1984.
  • 31. Danner H, Holzer M, Mayrhuber E, Braun R. Acetic acid increases stability of silage under aerobic conditions. Applied and Environmental Microbiology. 2003; 69: 562-567. doi: 10.1128/AEM.69.1.562-567.2003
  • 32. Seppälä A, Rinne M, Huuskonen A. Efficacy of different additives in ensiling faba bean and field pea based whole crop silages. Agriculture and Food Science 2019; 28: 165-175. doi: 10.23986/afsci.84737
  • 33. Carro MD, Ranilla MJ. Influence of different concentrations of disodium fumarate on methane production and fermentation of concentrate feeds by rumen micro-organisms in vitro. British Journal of Nutrition 2003; 90: 617-623. doi: 10.1079/ BJN2003935
  • 34. Carro MD, López S, Valdės C, Ovejero FJ. Effect of DL-malate on mixed ruminal microorganism fermentation using the rumen simulation technique (RUSITEC). Animal Feed Science and Technology 1999; 79; 279-288. doi: 10.1016/S0377- 8401(99)00034-6
  • 35. Diaz-Royon F. Effect of malic acid in dairy cow diets. All about Feed 2012; 24 (10): 6-7.
  • 36. Stallcup OT. Influence of addition of dl-malic acid to diets of lactating dairy cows. Journal of Dairy Science 1979; 62 (Suppl. 1): 225-226.
  • 37. Sniffen CJ, Ballard CS, Carter MP, Cotanch KW, Danna HM et al. Effects of malic acid on microbial efficiency and metabolism in continuous culture of rumen contents and on performance of mid-lactation dairy cows. Animal Feed Science and Technology 2006; 127: 13-31.
  • 38. Kung JR, Sheperd AC, Smagala AM, Enders KM, Bessett CA et al. The effect of preservatives based on propionic acid on the fermentation and aerobic stability of corn silage and a total mixed ration. Dairy Science 1998; 81: 1322-1330. doi: 10.3168/ jds.S0022-0302(98)75695-4
  • 39. Wang C, Liu Q, Meng J, Yang WZ, Yang XM et al. Effects of citric acid supplementation on rumen fermentation, urinary excretion of purine derivatives and feed digestibility in steers. Journal of the Science of Food and Agriculture 2009; 121: 15- 20. doi: 10.1002/jsfa.3724
  • 40. Ke WC, Ding WR, Xu DM, Shah MN, Zhang P et al. Influences of addition of malic acid or citric acid, Lactobacillus plantarum and their mixtures on fermentation quality, proteolysis and fatty acid composition of ensiled alfalfa. Archives of Animal Nutrition 2018; 72:492-502.
  • 41. Playne MJ, Mcdonald P. The buffring constituents of herbage and of silage. Journal of Science of Food and Agriculture 1966; 17: 264-268.
  • 42. Mcdonald P, Henderson AR, Heron SJE. Biochemistry of silage. 2.ed. Marlow: Chalcombe Publication, 1991.
  • 43. Zeikus JG, Jain MK, Elankovan P. Biotechnology of succinic acid production and markets for derived industrial products. Applied Microbiology and Biotechnology 1991; 51: 545-552. doi: 10.1007/s002530051431
  • 44. Nakata PA. Advances in our understanding of calcium oxalate crystal formation and function in plants. Plant Science 2003; 164: 901-909. doi: 10.1016/S0168-9452(03)00120-1
  • 45. Cheeke P. Natural Toxicants in Feeds, Forages and Poisonous Plants. Interstate Publication Danville, Illinois, 1998.
  • 46. Allison MJ, Littledike ET, James LF. Changes in ruminal oxalate degradation rates Associated with adaptation to oxalate ingestion. Journal of Animal Science 1977; 45: 173-1179. doi: 10.2527/jas1977.4551173x
  • 47. Rolinec M, Rakhmetov D, Bíro D, Juráček M. Nutritional value and fermentation characteristics of silage made from hybrid Rumex patientia L. × Rumex tianschanicus A.Los (Rumex OK 2) in different months during the year. Acta Fytotechn Zootechn 2018; 21 (3): 129-134. doi: 10.15414/afz.2018.21.03.129-134
  • 48. Panda N, Sahu B.K. Effect of dietary levels of oxalic acid on calcium and phosphorus assimilation in crossbred bulls. Indian Journal of Animal Nutrition 2002; 19 :215-220.
  • 49. Hejduk S, Dolezal P. Nutritive value of broad-leaved dock (Rumex obtusifolius L.) and its effect on the quality of grass silages. Czech Journal of Animal Science 2004; 49 (4): 144- 150.
  • 50. Suttle NF. Mineral Nutrition of Livestock. CABI Publishing, Wallingford, UK, 2010; 13: 347-383.
  • 51. Yogeshpriya S, Selvara P. Mastery of Potassium Status and Their Consequences of Hypokalemia in Dairy Cattle. Shanlax International Journal of Veterinary Science 2018; 5 (3): 1-5.
  • 52. Ahemad M, Zaidi A, Saghir Khan, M, Oves M. Biological importance of phosphorus and phosphate solubilizing microbes - an overview. In: Khan MS, Zaidi A (editor). Phosphate Solubilising Microbes for Crop Improvement. Nova Science Publishers, Inc. Newyork, USA: 2009. pp. 1-14.
  • 53. Trailokya A, Srivastava A, Bhole M, Zalte N. Calcium and Calcium Salts. Journal of the Association of Physicians of India 2017; 100-102.
  • 54. Arnoud MJ. Update on the assessment of magnesium status. British Journal of Nutrition 2008; 99(3): 24-36
  • 55. Kidambi SP, Matches AG, Karnezos TP, Keeling JW. Mineral concentrations in forage sorghum grown under two harvest management systems. Agronomy Journal 1993; 85: 826-833.
  • 56. Tekeli A, Ates S. Yield potential and mineral composition of white clover (Trifolium repens L.) – tall fescue (Festuca arundinacea Schreb.) mixtures. Journal of Central European Agriculture 2005; 6: 27-34.
  • 57. Mut H, Gülümser E, Çopur Doğrusöz M, Başaran, U. Effect of Different Companion Crops on Alfalfa Silage Quality. Journal of Agriculture and Nature 2020; 23 (4): 975-980. doi:10.18016/ ksutarimdoga.vi.669234.
  • 58. Dumlu Gul Z, Tan, M. Using Legume Forage Crops for Silage. Journal of Agricultural Faculty of Atatürk University 2013; 44 (1): 189-193.
  • 59. Önal Aşçı Ö, Acar Z. Inorganic substances found in the structure of the plant. In Önal Aşçı Ö, Acar Z. (editor). Minerals. Ankara, Turkey, Agriculture engineers chamber; 2018. pp. 68-69.
APA Gülümser E, Mut H, başaran u, çopur doğrusöz m (2021). An assessment of ensiling potential in maize x legume (soybean and cowpea) binary mixtures for yield and feeding quality. , 547 - 555. 10.3906/vet-2006-43
Chicago Gülümser Erdem,Mut Hanife,başaran uğur,çopur doğrusöz medine An assessment of ensiling potential in maize x legume (soybean and cowpea) binary mixtures for yield and feeding quality. (2021): 547 - 555. 10.3906/vet-2006-43
MLA Gülümser Erdem,Mut Hanife,başaran uğur,çopur doğrusöz medine An assessment of ensiling potential in maize x legume (soybean and cowpea) binary mixtures for yield and feeding quality. , 2021, ss.547 - 555. 10.3906/vet-2006-43
AMA Gülümser E,Mut H,başaran u,çopur doğrusöz m An assessment of ensiling potential in maize x legume (soybean and cowpea) binary mixtures for yield and feeding quality. . 2021; 547 - 555. 10.3906/vet-2006-43
Vancouver Gülümser E,Mut H,başaran u,çopur doğrusöz m An assessment of ensiling potential in maize x legume (soybean and cowpea) binary mixtures for yield and feeding quality. . 2021; 547 - 555. 10.3906/vet-2006-43
IEEE Gülümser E,Mut H,başaran u,çopur doğrusöz m "An assessment of ensiling potential in maize x legume (soybean and cowpea) binary mixtures for yield and feeding quality." , ss.547 - 555, 2021. 10.3906/vet-2006-43
ISNAD Gülümser, Erdem vd. "An assessment of ensiling potential in maize x legume (soybean and cowpea) binary mixtures for yield and feeding quality". (2021), 547-555. https://doi.org/10.3906/vet-2006-43
APA Gülümser E, Mut H, başaran u, çopur doğrusöz m (2021). An assessment of ensiling potential in maize x legume (soybean and cowpea) binary mixtures for yield and feeding quality. Turkish Journal of Veterinary and Animal Sciences, 45(3), 547 - 555. 10.3906/vet-2006-43
Chicago Gülümser Erdem,Mut Hanife,başaran uğur,çopur doğrusöz medine An assessment of ensiling potential in maize x legume (soybean and cowpea) binary mixtures for yield and feeding quality. Turkish Journal of Veterinary and Animal Sciences 45, no.3 (2021): 547 - 555. 10.3906/vet-2006-43
MLA Gülümser Erdem,Mut Hanife,başaran uğur,çopur doğrusöz medine An assessment of ensiling potential in maize x legume (soybean and cowpea) binary mixtures for yield and feeding quality. Turkish Journal of Veterinary and Animal Sciences, vol.45, no.3, 2021, ss.547 - 555. 10.3906/vet-2006-43
AMA Gülümser E,Mut H,başaran u,çopur doğrusöz m An assessment of ensiling potential in maize x legume (soybean and cowpea) binary mixtures for yield and feeding quality. Turkish Journal of Veterinary and Animal Sciences. 2021; 45(3): 547 - 555. 10.3906/vet-2006-43
Vancouver Gülümser E,Mut H,başaran u,çopur doğrusöz m An assessment of ensiling potential in maize x legume (soybean and cowpea) binary mixtures for yield and feeding quality. Turkish Journal of Veterinary and Animal Sciences. 2021; 45(3): 547 - 555. 10.3906/vet-2006-43
IEEE Gülümser E,Mut H,başaran u,çopur doğrusöz m "An assessment of ensiling potential in maize x legume (soybean and cowpea) binary mixtures for yield and feeding quality." Turkish Journal of Veterinary and Animal Sciences, 45, ss.547 - 555, 2021. 10.3906/vet-2006-43
ISNAD Gülümser, Erdem vd. "An assessment of ensiling potential in maize x legume (soybean and cowpea) binary mixtures for yield and feeding quality". Turkish Journal of Veterinary and Animal Sciences 45/3 (2021), 547-555. https://doi.org/10.3906/vet-2006-43